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1. Introduction

One of the recent striking achievements in string field theory is the analytic proof of Sen’s

conjectures [1, 2]. In [3], Schnabl constructed an analytic solution for the equation of

motion

QBΦ + Φ ∗ Φ = 0, (1.1)

in Witten’s cubic string field theory [4] and proved that the height of the tachyon potential

at the vacuum is related to the tension of the D-brane [1]. The consistency of the solutions

has been checked in [5, 6]. Subsequently, the Sen’s third conjecture which states that there

is no physical state at this vacuum was proved analytically [7].

The equation of motion (1.1) is a highly non-linear equation with an infinite numbers of

degrees of freedom. In the Siegel gauge b0Φ = 0, which is traditionally used for the most of

the computation, the equation can be solved by tedious numerical calculation such as level

truncation [8 – 10]. In this gauge, the calculations of the amplitudes are also formidable

task [11, 12].

Recent developments of the string field theory rely heavily on the use of the proper

gauge for the calculation. Schnabl realized that the gluing rule of string field theory does

not match with the Siegel gauge and used another gauge which is more useful in the star

operation [3]. Subsequent proof of the absence of the physical degree of freedom also relies
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heavily on the use of this gauge [7]. In [13], the technique has been generalized to obtain

solutions for a ghost number zero string field equation.

Another problem in the string field theory is the complicated expression of off-shell

amplitudes [11, 12]. Recent developments suggest that this gauge simplifies the analysis of

the amplitudes. However, the propagator in this gauge turns out not to be convenient for

explicit calculation which was stated in [3].

In this paper, we consider the mixed use of the gauge choice for the states and the

propagators. We use the Siegel gauge for the states and propose a novel gauge for the

propagators. We show that this gauge choice gives a simple formula for the four point

off-shell amplitudes in Witten’s cubic string field theory. This modified gauge can also be

applied to WZW-like action [14] of open superstring field theory. Although the physical

meaning of the mixed gauge choice is not clear at this stage, the different choice of the

gauge is so useful for computing the on-shell amplitudes in the string field theory.

This paper is organized as follows. In the next section, we review the star calculus

in z̃ coordinate and how to calculate four point amplitudes. In section 3, we compute

the expression of four-tachyon off-shell amplitudes in the Schnabl gauge. In section 4, we

propose the use of the modified Schnabl gauge for the propagator and apply this method

to some four point amplitudes. In section 5, we show how to use this modified gauge in

WZW-like action of the superstring to compute the string amplitudes. In section 6, we

compute the four point amplitude for tachyons in GSO(−) sector and the effective quartic

terms of the gauge fields in the zero momentum limit. The final section is devoted to some

discussions.

2. Witten’s cubic interaction in z̃ coordinate and amplitudes

In Witten’s open string field theory, the gluing condition simplifies in the coordinates

z̃ = arctan z. In this coordinate, the primary field φ(z) of dimension h is given by [3]

φ̃(z̃) =

(
dz

dz̃

)h

φ(tan z̃) = (cos z̃)−2hφ(tan z̃). (2.1)

The scaling generator can be written by the energy momentum tensor in this coordinate

as

L0 =

∮
dz̃

2πi
z̃Tz̃z̃(z̃) = L0 +

∞∑

k=0

2(−1)k+1

4k2 − 1
L2k. (2.2)

The scaling operator Ur can be defined as

Ur =

(
2

r

)L0

. (2.3)

The action of Ur with the field of conformal dimension h is simply given by

Urφ̃(z̃)U−1
r =

(
2

r

)h

φ̃

(
2

r
z̃

)
. (2.4)
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A non-trivial property of this operator is

e−β bL0 = U †
2+2βU2+2β , (2.5)

where

L̂0 = L0 + L0
†. (2.6)

Because of this property, it seems convenient to define an operator

Ûr = U †
r Ur. (2.7)

We can easily find Û2 = 1 and the product rule is

ÛrÛs = Ûr+s−2. (2.8)

Three vertex of string field theory defines a mapping gluing two fields into one state.

In the coordinate system, the mapping can be simply given by

φ̃1(0)|0〉 ∗ φ̃2(0)|0〉 = Û3φ̃1

(π

4

)
φ̃2

(
−π

4

)
|0〉. (2.9)

The BPZ conjugate of states is defined by the conformal transformation I(z) = −1/z. For

example, the conjugate of the above state is given by

bpz
(
Û3φ̃1

(π

4

)
φ̃2

(
−π

4

)
|0〉

)
= (−1)|φ1||φ2|〈0|I ◦ φ̃2

(
−π

4

)
I ◦ φ̃1

(π

4

)
Û3, (2.10)

where |φ| is the Grassman parity of φ. In the z̃ coordinates inversion I acts simply as a

translation I ◦ φ̃(z̃) = φ̃(z̃ + π/2) = φ̃(z̃ − π/2). More generally, the gluing of the states of

the form Û φ̃ takes a simple form

Ûrφ̃1(x̃)|0〉 ∗ Ûsφ̃2(ỹ)|0〉 = Ûr+s−1φ̃1

(
x̃ +

π

4
(s − 1)

)
φ̃2

(
ỹ − π

4
(r − 1)

)
|0〉. (2.11)

In order to obtain the exact solutions, Schnabl used a gauge [3]

B0Φ = 0, (2.12)

where B0 is the zero mode of the b ghost in the z̃ coordinate

B0 =

∮
dz̃

2πi
z̃b(z̃) = b0 +

∞∑

k=0

2(−1)k+1

4k2 − 1
b2k. (2.13)

Its anti-commutator with BRST charge is given by {QB ,B0} = L0. For later convenience,

we define

B̂0 = B0 + B†
0, (2.14)

from which we find a relation {QB , B̂0} = L̂0. The advantage of the Schnabl gauge is that

the form of the fields including ghosts and L̂0, B̂0 close under the star operations and the
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action of the BRST charge [3]. This choice turns out to be crucial for obtaining exact

solution of eq. (1.1).

Useful identities including B̂0 are

B̂0Ûr = ÛrB̂0, (2.15)

B̂0U
†
r =

2

r
U †

r B̂0, (2.16)

B̂0(φ1 ∗ φ2) =
π

2
(−1)gh(φ1)(B1φ1) ∗ φ2 + φ1 ∗ (B̂0φ2), (2.17)

where B1 = b1 + b−1. We find that anti-commutators

{B0, c̃(z̃)} = z̃,

{B1, c̃(z̃)} = 1, (2.18)

are also useful for the calculation of the amplitudes. Correlation functions of the fields in

the z̃ coordinates are summarized as

〈∂X̃µ(z̃)∂X̃ν(w̃)〉 = −α′

2
ηµν 1

sin2(z̃ − w̃)
,

〈c̃(x̃)c̃(ỹ)c̃(w̃)〉 = sin(x̃ − ỹ) sin(ỹ − w̃) sin(w̃ − x̃). (2.19)

In this section, we will show how the above relations will be used to obtain the amplitudes.

Witten’s cubic action is given by

S = − 1

g2

[
1

2
〈Φ, QBΦ〉 +

1

3
〈Φ,Φ ∗ Φ〉

]
. (2.20)

To find the effective action, we will use the background field method [15]. We separate the

field into the background field φb and quantum fluctuation R as

Φ = φb + R. (2.21)

We consider the path integral of the field R. The contribution of R to the action is

S = − 1

g2

[
1

2
〈R,QBR〉 + 〈R,φb ∗ φb〉 + 〈φb, R ∗ R〉 +

1

3
〈R,R ∗ R〉

]
. (2.22)

To find the effective action, we need to consider the propagator of the quantum fluctuation

field R and fix the gauge. We can obtain the four point process by shifting the field R [15]

R → R − Pφb ∗ φb, (2.23)

where P is the propagator which satisfies a relation

QBP = 1. (2.24)

As a result of the shift of the quantum fluctuation field R, we find that the quartic inter-

action term is given in z̃ coordinates as

A4 =
1

2g2

〈
I ◦ φ̃b

(π

4

)
I ◦ φ̃b

(
−π

4

)
Û3PÛ3φ̃b

(π

4

)
φ̃b

(
−π

4

)〉
. (2.25)

Here we assumed that the field φ̃b has ghost number 1 and changed the order of two

conjugated fields to cancel the overall −1 factor.
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3. Four point amplitudes in the Schnabl gauge

We are now going to compute the amplitudes in the Schnabl gauge. Let us consider the

fields of the form φb = c(z)V1(z). For example, the tachyon and photon vertices are simply

given by φb = c(z)eikX(z) and φb = εµ(k)c(z)
√

2
α′ ∂Xµ(z)eikX(z). Note that the tachyon

and the photon are the same in Siegel gauge and in Schnabl gauge.

In the Schnabl gauge (2.12), the propagator is given by

P =
B0

L0
QB

B†
0

L0
†
. (3.1)

For the computation of the amplitude in this gauge, we need two Schwinger parameters

for this propagator

P = B0

∫ ∞

0
dt1e

−t1L0QBB†
0

∫ ∞

0
dt2e

−t2L
†
0

=

∫ ∞

0
dt1

∫ ∞

0
dt2B0UT1

QBB†
0U

†
T2

, (3.2)

where T1 = 2et1 , T2 = 2et2 .

Using the commutation rules, we find

Û3B0UT1
QBB†

0U
†
T2

Û3 = Û3B0UT1
Û3 − Û3B0UT1

B†
0U

†
T2

Û3QB. (3.3)

Thus in the Schnabl gauge, the four point amplitude (2.25) is written as follows

A4 =
1

2g2

∫ ∞

0
dt

〈
I ◦ φ̃1

(π

4

)
I ◦ φ̃2

(
−π

4

)
Û3B0UT Û3φ̃3

(π

4

)
φ̃4

(
−π

4

)〉

− 1

2g2

∫ ∞

0
dt1

∫ ∞

0
dt2

〈
I ◦ φ̃1

(π

4

)
I ◦ φ̃2

(
−π

4

)
Û3B0UT1

B†
0U

†
T2

Û3QBφ̃3

(π

4

)
φ̃4

(
−π

4

)〉
.

(3.4)

In the case that all φi
′s are primary field with weight hi, using

Û3B0UT Û3 = U †
3T+2

T

(
3T

3T + 2
B0 −

2

3T + 2
B†

0

)
U 3T+2

2

, (3.5)

and eq. (2.4), the correlator in the first term can be simplified as

〈
I ◦ φ̃1

(π

4

)
I ◦ φ̃2

(
−π

4

)
U †

3U3B0UT1
U †

3U3φ̃3

(π

4

)
φ̃4

(
−π

4

)〉

=

〈
φ̃1 (z̃1) φ̃2 (−z̃1)

(
3T1

3T1 + 2
B0 −

2

3T1 + 2
B†

0

)
φ̃3 (z̃2) φ̃4 (−z̃2)

〉

×
(

2T1

3T1 + 2

)h1+h2
(

4

3T1 + 2

)h3+h4

, (3.6)

where

z̃1 =
π(2T1 + 1)

3T1 + 2
, z̃2 =

π

3T1 + 2
. (3.7)
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As an example, let us consider the four point amplitude of tachyons. Substituting into

the tachyon vertex operator, the first term of eq. (3.4) yields

1

2g2
(2π)26δ26(

∑
ki)

∫ 1/2

0
dy y−2−α′s(1 − y)−2−α′u

×| sin(2z̃1)|2−α′(k2
1+k2

2)| sin(2z̃2)|2−α′(k2
3+k2

4)| sin(z̃1 + z̃2)|4−α′(k2
1+k2

2+k2
3+k2

4)

×| sin(z̃1 − z̃2)|4−α′(k2
1+k2

2+k2
3+k2

4)

(
2T1

3T1 + 2

)α′(k2
1+k2

2)−2 (
4

3T1 + 2

)α′(k2
3+k2

4)−2

, (3.8)

where new variable y is introduced such as

y = −sin(2z̃1) sin(2z̃2)

sin2(z̃1 − z̃2)
, 1 − y =

sin2(z̃1 + z̃2)

sin2(z̃1 − z̃2)
,

y = 1/2 (for t = 0), y = 0 (for t = ∞). (3.9)

The second term of (3.4) which vanishes for on-shell amplitude is rather complicated.

Using

U †
3U3B0UT1

B†
0U

†
T2

U †
3U3 = − 4

3T1 + 3T2 − 4
U †

3T1+3T2−4

T1

B†
0B0U 3T2+3T1−4

T2

, (3.10)

and evaluating correlator, we get

− 1

2g2

∫ ∞

0
dt1

∫ ∞

0
dt2

4(−α′k2
3 − α′k2

4 + 2)

3T1 + 3T2 − 4

(
2

V

)−2+α′(k2
1
+k2

2
) (

2

W

)−2+α′(k2
3
+k2

4
)

×(2π)26δ26(
∑

ki)
∣∣∣sin

( π

V

)∣∣∣
2α′k1·k2

∣∣∣sin
( π

W

)∣∣∣
2α′k3·k4

∣∣∣cos
( π

2V
− π

2W

)∣∣∣
2α′(k1·k3+k2·k4)

×
∣∣∣cos

( π

2V
+

π

2W

)∣∣∣
2α′(k1·k4+k2·k3) π

2V

(
cos

( π

V

)
+ cos

( π

W

))( π

W
cos

( π

W

)
− sin

( π

W

))
,

(3.11)

where

2

V
=

2T1

3(T1 + T2) − 4
,

2

W
=

2T2

3(T1 + T2) − 4
. (3.12)

4. Four point amplitudes of tachyons and gauge fields in the modified

Schnabl gauge

In the previous section, we have seen that the four point amplitudes in the Schnabl gauge

is very complicated. The complication stems from the form of the propagator in this gauge.

To avoid these difficulties, we will use the propagator in the gauge B̂0R = 0 not in the

Schnabl gauge B0R = 0 for the quantum fluctuation field.

Let us consider the four point amplitudes in this modified Schnabl gauge. In this

gauge, the propagator can be written as

P =
B̂0

L̂0

, (4.1)
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which is manifestly self-conjugate and commutes with Û which appears in the amplitudes.

We find that the quartic interaction term is given by

A4 =
1

2g2

〈
I ◦ φ̃1

(π

4

)
I ◦ φ̃2

(
−π

4

)
Û3

B̂0

L̂0

Û3φ̃3

(π

4

)
φ̃4

(
−π

4

)〉
. (4.2)

We will use Schwinger parametrization as

B̂0

L̂0

=

∫ ∞

0
dβB̂0e

−β bL0 =

∫ ∞

0
dβB̂0Û2β+2. (4.3)

Using the manipulation rule ÛrÛs = Ûr+s−2 and the fact that B̂0 and Ûr commute with

each other, we easily find

A4 =
1

2g2

∫ ∞

0
dβ

〈
I ◦ φ̃1

(π

4

)
I ◦ φ̃2

(
−π

4

)
B̂0Û2β+4φ̃3

(π

4

)
φ̃4

(
−π

4

)〉
. (4.4)

By expressing Û2β+4 = U †
2β+4U2β+4 and relations (2.4) and (2.16), we can move U †

2β+4 to

the left and U2β+4 to the right to find

A4 =
1

2g2

∫ ∞

0

dβ

(β + 2)
P

i
hi+1

〈
I ◦ φ̃1

(
π

4

(
1

β + 2

))
I ◦ φ̃2

(
−π

4

(
1

β + 2

))

×B̂0φ̃3

(
π

4

(
1

β + 2

))
φ̃4

(
−π

4

(
1

β + 2

))〉
. (4.5)

By changing variable by t = 1/(β + 2), we arrive at the following formula of four point

amplitudes;

A4 =
1

2g2

∫ 1/2

0
dt t

P
i
hi−1

〈
I ◦ φ̃1

(π

4
t
)

I ◦ φ̃2

(
−π

4
t
)(

B0 + B†
0

)
φ̃3

(π

4
t
)

φ̃4

(
−π

4
t
)〉

.(4.6)

Let us apply this formula to the four point tachyon amplitudes. Here, we use the Siegel

gauge for the states instead of B̂0 gauge. Although the physical meaning of the off-shell

amplitudes in this mixed gauge choice is not clear, it can be proved that the on-shell four

point amplitudes are reproduced correctly.

Suppose we have modified b0 as

b′0 = b0 +
∞∑

n=−∞,n 6=0

anbn (4.7)

with some parameters an. When we use a gauge for the internal state b′0R = 0, the

propagator of this gauge is given by

P ′ =
b′0
L′

0

, (4.8)

where

L′
0 = {QB , b′0} = L0 +

∞∑

n=−∞,n 6=0

anLn. (4.9)
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We will compute the variation of the propagator with respect to an;

∂P
∂an

= bn
1

L′
0

− b′0
1

L′
0

Ln
1

L′
0

. (4.10)

Because of the relations L′
0 = {QB , b′0} and Ln = {QB , bn}, this expression can be rewritten

as

∂P
∂an

= {QB , b′0
1

L′
0

bn
1

L′
0

}. (4.11)

Eq. (4.11) implies that the dependence on the parameters is BRST exact and decouples

from the correlation functions of BRST closed states. This statement may be an extension

of the propagator of the usual gauge fields. That is to say, even though the propagator

of gauge fields contains the gauge parameters, the total amplitudes do not depend on the

parameters. The equation (4.11) also implies that we can use the propagator whose gauge

condition is different from the one for external states. The equation (4.11) states that

the difference is just BRST exact and the amplitudes for BRST invariant (on-shell) states

coincide with the on-shell amplitudes in the Siegel gauge.

The tachyon vetex operators are φi = ceiki·X , and the following correlator included in

the formula (4.6) is easily evaluated by using eq. (D.12) from ref. [3] and typical correlation

functions for eik·X operators

〈
I ◦ c̃eik1·X̃

(π

4
t
)

I ◦ c̃eik2·X̃
(
−π

4
t
)(

B0 + B†
0

)
c̃eik3·X̃

(π

4
t
)

c̃eik4·X̃
(
−π

4
t
)〉

= (2π)26δ26(
∑

iki)πt sin
(π

2
t
)2α′(k1·k2+k3·k4)+1

cos
(π

2
t
)2α′(k1·k4+k2·k3)+1

. (4.12)

Changing variable y = sin2 π
2 t, we find the four tachyon amplitude as

A4 =
1

2g2
(2π)26δ26(

∑
iki)

∫ 1/2

0
dy t(y)α

′
P

k2
i
−4y−α′s−α′

P
i
k2

i
/2(1 − y)−α′u−α′

P
i
k2

i
/2,

(4.13)

where t(y) = 2
π arcsin

√
y. Note that the integral appearing in the amplitudes are very

simple although we cannot get any analytic expression for generic values of momenta. It is

naturally expected that the integral has the divergence caused by the intermediate tachyon.

To get the full tachyon amplitude, we must consider all 4! permutations of external

momenta ki (i = 1, 2, 3, 4). The sum of these 4! permutations give six different terms, and

each of these has a factor 4

A4 =
2

g2
(2π)26δ26(

∑
iki)[I(s, u) + I(u, s) + I(u, t) + I(t, u) + I(t, s) + I(s, t)], (4.14)

where

I(s, u) =

∫ 1/2

0
dy t(y)α

′
P

k2
i
−4y−α′s−α′

P
i
k2

i
/2(1 − y)−α′u−α′

P
i
k2

i
/2. (4.15)
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Let us consider the case of on-shell amplitudes where α′k2
i = 1. Using this on-shell

condition, I(s, u) becomes

I(s, u) =

∫ 1/2

0
dy y−α′s−2(1 − y)−α′u−2. (4.16)

Therefore, (s ↔ u) term contributes to the range 1
2 < y < 1 after changing variable

y → 1 − y, so that

I(s, u) + I(u, s) =

∫ 1

0
dy y−α′s−2(1 − y)−α′u−2 = B(−1 − α′s,−1 − α′u), (4.17)

where B(a, b) is the Euler beta function

B(a, b) =

∫ 1

0
dy ya−1(1 − y)b−1. (4.18)

Other four terms can be combined in the same way. Totally we have the following well-

known expression for the tachyon amplitude;

A4 =
2

g2
(2π)26δ26(

∑
iki)[B(−α(s),−α(u)) + B(−α(u),−α(t)) + B(−α(t),−α(s))],

(4.19)

where α(s) = 1 + α′s.

In the case of non-Abelian gauge fields, the procedures are quite similar. However,

even in the off-shell amplitude, we have to impose the transversality condition εi · ki = 0

on the vector vertex operators φi = εµ ic∂Xµeiki·X (i = 1, 2, 3, 4), since the formula (4.11)

is applicable only to the primary operators.

The four vector amplitude is

A4 =
1

2g2
(2π)26δ26(

∑
iki)

[
J(s, u)Tr (λa1λa2λa3λa4) + J(u, s)Tr (λa1λa4λa3λa2)

+J(u, t)Tr (λa1λa3λa2λa4) + J(t, u)Tr (λa1λa4λa2λa3)

+J(t, s)Tr (λa1λa2λa4λa3) + J(s, t)Tr (λa1λa3λa4λa2)
]
F(y; ε, k),(4.20)

where

J(s, u) =

∫ 1/2

0
dy t(y)α

′
P

k2
i y−α′s−α′

P
i
k2

i
/2(1 − y)−α′u−α′

P
i
k2

i
/2, (4.21)

and the explicit form of function F(y; ε, k) which includes polarization vectors εi (i =

1, 2, 3, 4) is given in appendix A.

Imposing on-shell conditions k2
i = 0, we find

A4 =
1

g2
(2π)26δ26(

∑
iki)

∫ 1

0
dy

[
y−α′s(1 − y)−α′u Tr (λa1λa2λa3λa4 + λa1λa4λa3λa2)

+y−α′u(1 − y)−α′t Tr (λa1λa3λa2λa4 + λa1λa4λa2λa3)

+y−α′t(1 − y)−α′sTr(λa1λa2λa4λa3 + λa1λa3λa4λa2)
]
F(y; ε, k).(4.22)

The integral is divergent at the limit k → 0 because of the intermidiate tachyon. After a

appropriate regularization, this expression reduces to the four point interactions required

for the Yang-Mills action [15].
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5. Effective quartic interaction for open superstring

In the previous section, we have shown how the modified use of the Schnabl gauge simplifies

the computation of open string amplitudes. In this section, we will extend the analysis to

the open superstrings. We are going to derive the formula of the effective quartic coupling

for the superstring using WZW-like action [14]

S =
1

4g2

〈
(e−ΦQBeΦ)(e−Φη0e

Φ) −
∫ 1

0
dt(e−tΦ∂te

tΦ){(e−tΦQBetΦ), (e−tΦη0e
tΦ)}

〉
. (5.1)

The ordinary choice of the gauge is

b0Φ = 0, ξ0Φ = 0. (5.2)

The cubic terms in this action are extracted as

S3 =
1

6g2

[
〈(QBΦ)Φ(η0Φ)〉 − 〈(QBΦ)(η0Φ)Φ〉

]
. (5.3)

Expanding the field around the background (Φ → Φ + R), we get the terms linear in R

〈(QBΦ)R(η0Φ)〉 − 〈(QBΦ)(η0Φ)R〉 + 〈(QBR)Φ(η0Φ)〉 − 〈(QBR)(η0Φ)Φ〉
+〈(QBΦ)Φ(η0R)〉 − 〈(QBΦ)(η0R)Φ〉 = 3

[
〈(QBΦ)R(η0Φ)〉 − 〈(QBΦ)(η0Φ)R〉

]
. (5.4)

Therefore, the total action is

S = − 1

2g2
〈η0R,QBR〉 − 1

2g2
〈R, (QBΦ) ∗ (η0Φ) + (η0Φ) ∗ (QBΦ)〉 + · · ·

= − 1

2g2
〈η0R,QBR〉 +

1

2g2
〈η0R, ξ0

{
(QBΦ) ∗ (η0Φ) + (η0Φ) ∗ (QBΦ)

}
〉 + · · · , (5.5)

where we have used ξ0R = 0. Shifting the quantum fluctuation field R by

R → R − 1

2

b0

L0
ξ0

{
(QBΦ) ∗ (η0Φ) + (η0Φ) ∗ (QBΦ)

}
(5.6)

to eliminate the terms linear in R, we get the effective quartic coupling

S(4) = − 1

2g2

1

4

〈
QB

b0

L0
ξ0Φ

(2), η0
b0

L0
ξ0Φ

(2)
〉

= − 1

8g2

〈
Φ(2),

b0

L0
ξ0Φ

(2)
〉
, (5.7)

where

Φ(2) = (QBΦ) ∗ (η0Φ) + (η0Φ) ∗ (QBΦ). (5.8)

In particular, when the on-shell condition η0QBΦ=0 is satisfied, we can rewrite Φ(2) as

Φ(2) = −η0

{
(QBΦ) ∗ Φ − Φ ∗ (QBΦ)

}
. (5.9)

Therefore, the effective quartic coupling is given by [15]

S(4) = − 1

8g2

〈
QB

b0

L0
(Φ ∗ QBΦ − QBΦ ∗ Φ), η0

b0

L0
(Φ ∗ QBΦ − QBΦ ∗ Φ)

〉
. (5.10)
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Again we are going to use z̃ coordinates in the same way as in Witten’s cubic action.

Gauge conditions (5.2) are transformed by Utan into

B0Φ̃ = 0, ξ̃0Φ̃ = 0. (5.11)

Therefore, states which satisfy eq. (5.2) automatically satisfy these conditions in z̃ coor-

dinates. The first one is what we call the Schnabl gauge condition. We will next consider

the modified Schnabl gauge. We define the modified Schnabl gauge for the superstring as

B̂0R = 0, ξ̃0R = 0. (5.12)

Imposing this modified Schnabl gauge for the fluctuation R, the effective quartic term (5.7)

is rewritten as

S(4) =
−1

8g2

〈
(QBΦ̃) ∗ (η0Φ̃)+(η0Φ̃) ∗ (QBΦ̃),

B̂0

L̂0

ξ̃0

{
(QBΦ̃)∗(η0Φ̃)+(η0Φ̃) ∗ (QBΦ̃)

}〉
.(5.13)

6. Four point amplitude of tachyons and gauge fields

We are now going to compute the four point amplitude of tachyons. In order to deal with

GSO(−) sector that tachyons appear, we consider the string field action for the non-BPS

D-brane:

S =
1

4g2

〈
(e−Φ̂Q̂BeΦ̂)(e−Φ̂η̂0e

Φ̂) −
∫ 1

0
dt(e−tΦ̂∂te

tΦ̂){(e−tΦ̂Q̂BetΦ̂), (e−tΦ̂η̂0e
tΦ̂)}

〉
, (6.1)

In this action, 2 × 2 internal Chan-Paton factors are added both to the vertex operators

and to QB and η0. The tachyon vertex operator is then written as

φ̂ = ξce−φeik·X ⊗ σ1. (6.2)

QB and η0 are tensored with σ3

Q̂B = QB ⊗ σ3, η̂0 = η0 ⊗ σ3. (6.3)

Since the algebraic structure of this non-BPS action is completely identical to that of

BPS action (5.1), we can get the same formula for the quartic coupling as eq. (5.13) up

to a factor 2 which compensate the trace of the internal CP matrices. Finally, we find the

effective quartic couping

S(4) =
−1

16g2

〈
(Q̂BΦ̃)∗(η̂0Φ̃)+(η̂0Φ̃)∗(Q̂BΦ̃),

B̂0

L̂0

ξ̃0

{
(Q̂BΦ̃)∗(η̂0Φ̃)+(η̂0Φ̃)∗(Q̂BΦ̃)

}〉
. (6.4)

Corresponding amplitude is given by the same procedure as in the bosonic string

A4 = − 1

16g2

∫ ∞

0
dβ

〈(
I ◦ φ̂η

(
−π

4

)
I ◦ φ̂Q

(π

4

)
+ I ◦ φ̂Q

(
−π

4

)
I ◦ φ̂η

(π

4

))

×B̂0Û2β+4ξ̃0

(
φ̂Q

(π

4

)
φ̂η

(
−π

4

)
+ φ̂η

(π

4

)
φ̂Q

(
−π

4

))〉

=
−1

16g2

∫ 1/2

0
dt t

P
hi−1

〈(
I ◦ φ̂η

(
−π

4
t
)

I ◦ φ̂Q

(π

4
t
)

+ I ◦ φ̂Q

(
−π

4
t
)

I ◦ φ̂η

(π

4
t
))

×B̂0ξ̃0

(
φ̂Q

(π

4
t
)

φ̂η

(
−π

4
t
)

+ φ̂η

(π

4
t
)

φ̂Q

(
−π

4
t
))〉

, (6.5)
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where we have defined

φ̂Q = (QB ⊗ σ3)(φ̃ ⊗ σ1)

=

[(
−α′k2 +

1

2

)
∂c̃c̃ξ̃e−φ̃eik·X̃ +

√
2α′kµψ̃µc̃eik·X̃ − η̃eφ̃eik·X̃

]
⊗ iσ2, (6.6)

φ̂η = (η0 ⊗ σ3)(φ̃ ⊗ σ1)

= c̃e−φ̃eik·X̃ ⊗ iσ2. (6.7)

Evaluating all correlation functions in eq. (6.5), we get

A4=− 2

16g2

∫ 1/2

0
dt t

P
(α′k2

i
− 1

2
)−1(2π)dδd(

∑
ki)y

−α′s−α′
P

k2
i
/2(1 − y)−α′t−α′

P
k2

i
/2

×
[
ηµνπt sin

(π

2
t
)

cos
(π

2
t
)(

2α′(kµ
1 kν

3 + kµ
2 kν

4 ) − 2α′(kµ
1 kν

4 + kµ
2 kν

3 )
1

cos2 π
2 t

)

+

(
−α′k2

1+
1

2

)(
1

2
cot

(π

4
t
)

(πt cos πt−sinπt)+
1

2
cot

(π

4
t
)

sec
(π

2
t
)

(πt−sin πt)

)

−
(
−α′k2

3+
1

2

)(
1

8
πt(4 cos πt−sin πt) tan

(π

4
t
)
− 1

8
πt sec

(π

2
t
)

(4+sin πt) tan
(π

4
t
))

−
(
−α′k2

4+
1

2

)(
1

8
πt sec

(π

2
t
)

(−4+sin πt) tan
(π

4
t
)
+

1

8
πt(4 cos πt+sinπt) tan

(π

4
t
))

+

(
−α′k2

2+
1

2

)(
1

2
cot

(π

4
t
)

sec
(π

2
t
)
(πt cos πt−sinπt)+

1

2
cot

(π

4
t
)
(πt cos πt−sin πt)

)]
.

(6.8)

It was shown that the WZW-like action reproduces the on-shell four point amplitudes

correctly [16]. Here we will see the consistency of the above amplitude at on-shell. Imposing

α′k2
i = 1/2 (i = 1, 2, 3, 4), we find that on-shell four tachyon amplitude is obtained as

A4 =
−1

4g2
(2π)dδd(

∑
ki)

∫ 1/2

0
dy

[
−y−α′s−1(1 − y)−α′u−2(α′u + 1)

+y−α′s−1(1 − y)−α′u−1(α′t + 1)
]
. (6.9)

We rewrite the first term of eq. (6.9) by partial integration

∫ 1/2

0
dy y−α′s−1(1 − y)−α′u−2(α′u + 1) =

∫ 1/2

0
dy y−α′s−1∂y(1 − y)−α′u−1

= (1/2)−α′s−1(1/2)−α′u−1

+(α′s + 1)

∫ 1/2

0
dy y−α′s−2(1 − y)−α′u−1. (6.10)

Summation over 4! permutations of the momenta yields to Euler beta functions. Using
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identity

−(−α′s − 1)B(−α′s − 1,−α′u) = −(−α′s − 1)
Γ(−α′s − 1)Γ(−α′u)

Γ(−α′s − α′u − 1)

=
−Γ(−α′s)Γ(−α′u)

Γ(−α′s − α′u)
(−α′s − α′u − 1)

= B(−α′s,−α′u)(α′t + 1), (6.11)

we find

A4 =
−1

g2
(2π)dδd(

∑
ki)

[
2(1 + α′u)B(−α′s,−α′t) − (1/2)−α′s−1(1/2)−α′t−1

+2(1 + α′t)B(−α′s,−α′u) − (1/2)−α′s−1(1/2)−α′u−1

+2(1 + α′s)B(−α′t,−α′u) − (1/2)−α′t−1(1/2)−α′u−1
]
. (6.12)

In order to get the complete four point amplitude, we have to consider summation

over the permutations of momenta. In addition, since the superstring field action (6.1) is

non-polynomial, quartic coupling which describes contact interaction of four string fields

S4 =
1

4! · 2g2

[
−2〈(Q̂BΦ̂)Φ̂(η̂0Φ̂)Φ̂〉 + 〈(Q̂BΦ̂)Φ̂2(η̂0Φ̂)〉 + 〈(Q̂BΦ̂)(η̂0Φ̂)Φ̂2〉

]
, (6.13)

also contributes to the four point amplitudes. We expect that the on-shell four point

tachyon amplitude in total agrees with the first quantization result [17]. The contributions

from the contact interaction (6.13) is given by

Acontact
4 = − 1

g2
(2π)dδd(

∑
ki)

[
(1/2)−α′s−1(1/2)−α′u−1 + (1/2)−α′u−1(1/2)−α′t−1

+(1/2)−α′t−1(1/2)−α′s−1
]
. (6.14)

This contribution just cancels the extra terms in eq. (6.12) and the result agrees with that

of the first quantization [17]

A4 + Acontact
4 =

−2

g2
(2π)dδd(

∑
ki)

[
(1 + α′u)B(−α′s,−α′t)

+(1 + α′t)B(−α′s,−α′u) + (1 + α′s)B(−α′t,−α′u)
]
.(6.15)

Four point amplitude of gauge fields is obtained in the similar way. For simplicity, we

only consider the gauge fields with zero momenta. The vertex operator is given by

φ = c̃ξ̃e−φ̃ψ̃µ. (6.16)

From eq. (5.10) on-shell four point amplitude is given by

A4 = − 1

8g2

〈
(φ ∗ φQ − φQ ∗ φ), η0

B̂0

L̂0

(φ ∗ φQ − φQ ∗ φ)
〉

= − 1

8g2

∫ 1/2

0

dt

t

〈(
I ◦ φQ

(
−π

4
t
)

I ◦ φ
(π

4
t
)
− I ◦ φ

(
−π

4
t
)

I ◦ φQ

(π

4
t
))

×η0B̂0

(
φ

(π

4
t
)

φQ

(
−π

4
t
)
− φQ

(π

4
t
)

φ
(
−π

4
t
))〉

, (6.17)
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where

φQ = QBφ

= i

√
2

α′
c̃∂X̃µ. (6.18)

After the evaluation of this correlation functions, integration can be done explicitly

A4 =
1

8g2

∫ 1/2

0
dy

(
2ηνσηµρ + 2

ηνρηµσ

(1 − y)2

)

=
1

4g2

(
1

2
ηµρηνσ + ηµσηνρ

)
. (6.19)

Contribution from eq. (6.13) is

Acontact
4 =

1

g2

(
1

8
ηµρηνσ − 1

2
ηµσηνρ

)
. (6.20)

Then the total four point amplitude is just the Yang-Mills quartic coupling.

A4 =
1

g2

(
1

4
ηµρηνσ − 1

4
ηµσηνρ

)
, (6.21)

which was first pointed out in [15] via the Siegel gauge.

7. Discussions

We have obtained the formula for the four point amplitudes in z̃ coordinates. Even in the

Schnabl gauge, the off-shell amplitudes are very complicated. In this paper, we proposed

the use of the modified version of the Schnabl gauge and showed that this gives the simple

formula of the four point off-shell amplitudes. If one wants to calculate the amplitudes in

this gauge with this formula, the states also have to satisfy B̂0 condition. However, the

states we used do not satisfy this modified gauge condition since these are fixed in the

Siegel gauge. This mixed gauge choice simplify the off-shell amplitudes and is useful to

calculate the on-shell amplitudes. In fact the on-shell four point amplitudes for tachyons

and photons are reproduced correctly. This method is applicable for the open superstring

field theory.

More interesting question is whether the Schnabl gauge is effective for obtaining closed

string amplitudes. In the closed string field theory, the calculations of the amplitudes are

so difficult even at on-shell. It would be interesting to investigate whether the amplitudes

of the closed string fields could be obtained in the Schnabl gauge.

We have postponed the arguments about the physical meaning of modified use of the

Schnabl gauge in the external fields. It is not clear whether this condition fixes the gauge

uniquely. At the linearized level, it might be shown that this gauge condition is consistent

by the method used for the Siegel gauge.
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A. Kinematical factor F

In this appendix, we list the kinetic factor which appeared in eq. (4.20).

F(y; ε, k) = ε1 ·ε2ε3 ·ε4y
−2 + ε1 ·ε3ε2 ·ε4 + ε1 ·ε4ε2 ·ε3(1 − y)2

−2α′
[
ε1 ·ε2(k2 · ε3)

{
(k2 · ε4)(1 − y)−1 + (k3 · ε4)y

−1(1 − y)−1
}

−ε1 ·ε2(k4 · ε3)
{

(k2 · ε4)y
−1 + (k3 · ε4)y

−2
}

+ε1 ·ε3(k3 · ε2)
{

(k3 · ε4)y
−1(1 − y)−1 + (k2 · ε4)(1 − y)−1

}

−ε1 ·ε3(k4 · ε2)
{

(k3 · ε4)y
−1 + (k2 · ε4)

}

−ε1 ·ε4(k4 · ε3)
{

(k4 · ε2)y
−1 + (k3 · ε2)y

−1(1 − y)−1
}

+ε1 ·ε4(k2 · ε3)
{

(k4 · ε2)(1 − y)−1 + (k3 · ε2)(1 − y)−2
}

−ε2 ·ε3(k2 · ε1)
{

(k2 · ε4)y
−1 + (k1 · ε4)y

−1(1 − y)−1
}

+ε2 ·ε3(k4 · ε1)
{

(k2 · ε4)(1 − y)−1 + (k1 · ε4)(1 − y)−2
}

+ε2 ·ε4(k2 · ε3)
{

(k2 · ε1)y
−1(1 − y)−1 + (k3 · ε1)(1 − y)−1

}

+ε2 ·ε4(k1 · ε3)
{

(k2 · ε1)y
−1 + (k3 · ε1)

}

−ε3 ·ε4(k3 · ε2)
{

(k3 · ε1)(1 − y)−1 + (k2 · ε1)y
−1(1 − y)−1

}

+ε3 ·ε4(k1 · ε2)
{

(k3 · ε1)y
−1 + (k2 · ε1)y

−2
}]

+4α′ 2
{
−ε1 · k3ε2 · k4ε3 · k2ε4 · k2 + ε1 · k3ε2 · k4ε3 · k4ε4 · k2(1 − y)y−1

+ε1 · k3ε2 · k3ε3 · k4ε4 · k2y
−1 + ε1 · k4ε2 · k4ε3 · k4ε4 · k2y

−1

−ε1 · k3ε2 · k4ε3 · k2ε4 · k3y
−1 + ε1 · k3ε2 · k4ε3 · k4ε4 · k3(1 − y)y−2

+ε1 · k3ε2 · k3ε3 · k4ε4 · k3y
−2 + ε1 · k4ε2 · k4ε3 · k4ε4 · k3y

−2

−ε1 · k3ε2 · k3ε3 · k2ε4 · k2(1 − y)−1 − ε1 · k4ε2 · k4ε3 · k2ε4 · k2(1 − y)−1

+ε1 · k4ε2 · k3ε3 · k4ε4 · k2y
−1(1 − y)−1 − ε1 · k3ε2 · k3ε3 · k2ε4 · k3y

−1(1 − y)−1

−ε1 · k4ε2 · k4ε3 · k2ε4 · k3y
−1(1 − y)−1 + ε1 · k4ε2 · k3ε3 · k4ε4 · k3y

−2(1 − y)−1

−ε1 · k4ε2 · k3ε3 · k2ε4 · k2(1 − y)−2 − ε1 · k4ε2 · k3ε3 · k2ε4 · k3y
−1(1 − y)−2

}
.

(A.1)
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